
A Review of Lossless Image Compression Based On
Transform Function

Avisha Khanna and Sanjeev Sharma
Department of Electronics and Commumication Engineering,

SOIT, RGPV, Bhopal, (MP)

(Received 17 September, 2011, Accepted 14 October, 2011)

ABSTRACT : The growth of data rate is increases in decades. The maximum part of data is image, image
required huge amount of memory for storage purpose and take more time for process of storage. Now lossless
image compassion is a necessary for saving memory and time. In the process of lossless image compression
transform function play a vital role. In this paper we discuss various transform function used for lossless image
compression such as DCT, DPCM, WPT and IWPT.
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I. INTRODUCTION

Lossless image compression plays a crucial rule in the
filed of data compression. It develops very slowly and it is
difficult to improve the efficiency of compression, since
complete information and high fidelity are demanded. The
lossless compression ratio of the conventional methods is
around 2 : 1 and 3 : 1, which doesn't satisfy practical
compression needs. So, it is necessary to develop more
efficient lossless image compression methods [5]. The
standard methods of image compression come in several
varieties. The current most popular method relies on
eliminating high frequency components of the signal by
storing only the low frequency components. This method
is used on JPEG, MPEG, H.261, and H.263 compression
algorithms. in this paper we discuss image compression
based on transform function. A transfer function is a
mathematical representation, in terms of spatial or temporal
frequency, of the relation between the input and output of
a linear time-invariant system. With optical imaging devices,
for example, it is the Fourier transform of the point spread
function (hence a function of spatial frequency) i.e. the
intensity distribution caused by a point object in the field
of view. Transfer functions are commonly used in the
analysis of systems such as single-input single-output
filters, typically within the fields of signal processing,
communication theory, and control theory. The discrete
cosine transform (DCT) is a technique for converting a
signal into elementary frequency components. It is widely
used in image compression. DPCM or differential pulse-
code modulation is a signal encoder that uses the baseline
of PCM but adds some functionality based on the prediction
of the samples of the signal [6]. The input can be an analog
signal or a digital signal. The discrete wavelet transform is
a subset of the far more versatile wavelet packet transform,
which generalizes the time-frequency analysis of the wavelet

transform. Integer wavelet packet transform function is a
whole number part of low pass filter and get integer number
such number is called packet. This paper is organized as
follows. In Section II, DCT (Discreet cosine Transform). III
In this Section DPCM (differential pulse-code modulation).
IV in this section discusses WPT-IWPT (wavelet packet
transforms).  In section discuss conclusion of transform
function in image compression.

II. DCT (DISCREET COSINE TRANSFORM)

The discrete cosine transform of a list of n real
numbers s(x), x = 0, n � 1, is the list of length n given by
[2]:
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where c(u) = 2 � 1/2 for u = 0 = 1 otherwise

Each element of the transformed list S(u) is the inner
(dot) product of the input list s(x) and a basis vector. The
constant factors are chosen so that the basis vectors are
orthogonal and normalized.  The DCT can be written as
the product of a vector (the input list) and the n × n
orthogonal matrix whose rows are the basis vectors. This
matrix, for n = 8, can be computed as follows :

DCTMatrix =

Table[If[k==0,

Sqrt[1/8],

Sqrt[2/8] Cos[Pi (2j + 1) k/16] ],

{k, 0, 7}, {j, 0, 7}] // N;

We can check that the matrix is orthogonal :
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DCTMatrix . Transpose [DCTMatrix] // Chop// Matrix
Form [2]
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Each basis vector corresponds to a sinusoid of a certain
frequency. The eight basis ectors for the discrete cosine
transform of length eight. The list s(x) can be recovered
from its transform S(u) by applying the inverse cosine
transform (IDCT):
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where c(u) = 2 � 1/2  for u = 0 = 1 otherwise.

This equation expresses s as a linear combination of
the basis vectors. The coefficients are the elements of the
transform S, which may be regarded as reflecting the amount
of each frequency present in the input s. This is a linear
discreet cosine transform function used in frequency spatial
domain in image compression.

III. DPCM (DIFFERENTIAL PULSE CODE
MODULATION)

Differential Pulse Code Modulation (DPCM) is
transformation for increasing the compressibility of an
image. It consists of scanning the image and predicting the
next pixel's value. There are several modes to predict the
next pixel's value. The basic idea behind this scheme is to
predict the value of a pixel based on certain neighboring
pixel values, using certain prediction coefficients [3]. The
difference between the predicated value and actual value
of the pixels is differential image, which is much less
correlated than the original image. The differential image is
then quantized and encoded. The schematic for loss DPCM
coder is shown in Fig. 1 [14], along with a third order
predictor. Note that the decoder has access only to the
reconstructed values of pixel while forming predictions of

pixels. Since the quantization of the differential image
introducer's error, the reconstructed values generally differ
from the original values. to ensure identical predictions at
both the encoder and decoder, the encoder also uses the
reconstructed pixel values in its predictions. The design of
a DPCM coder involves the optimization of the predictor
and the quantized. The inclusion of the quantize in the
prediction loop results in a complex dependency between
the predictor error and the quantization error [14].

Fig. 1. The encoder and decoder of DPCM.

Here we give a complete step for algorithm for image
compression based on DPCM [14].

I: Original image.

:I Reconstructed image.

N × M: Image size (N rows, M columns of pixels).

a, b, c: Prediction coefficients.

E*: Quantized residual image.

CR[1 : M]: Current row of reconstructed values.

UR[1 : M]: Upper row of reconstructed values.

LC[1 : N]: Leftmost column of reconstructed values.

Q: Quantizer function �Q(x) gives the quantized.
value of x.

Q�1: Dequantizer.

B: Entropy coded bit stream.

k: Number of quantization levels.

DV: Vector of decision levels.

RV: Vector of reconstruction levels.

Algorithm Lossy DPCM_Encode (in: I, a, b , c, Q, out:).

1. begin

2. E*[1, 1]  Q(I[1, 1])

3. LC[1]  CR[1]  Q�1(E*[1, 1])

   {Work on top row}

4. for j = 2 to M do

5. E*[1, j]  Q(I[1, j] �  CR[j � 1])
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6. CR[j]  Q�1(E*[1, j]) + CR[j �  1])

7. endfor

   {Work on leftmost column}

8. for i = 2 to N do

9. E*[i, 1]  Q(I[i, 1] � LC[i �  1])

10. LC[i � 1]  Q�1(E*[i, 1] + LC[i � 1])

11. endfor

12. for i = 2 to N do

13. UR[1 : m]  CR[1 : M]

14. CR[1]  LC[i]

15. for j = 2 to M do

16. p   a  .  CR[j �  1]  +  b  .  UR[j �  1]  +  c .  UR[j].
{Prediction}

17. E*[i, j]  Q(I[i, j] � p)

18. CR[j]  Q�1(E*[i, j]) + p

19.  endfor

20. endfor

21. B  ENTROPY_CODE(E*)

22. end

Algorithm    Lossy DPCM_Decode (in: B, a, b, c, Q, out: �I )

1. begin

2. E*  ENTROPY_DECODE(B)

3. 1 *�[1,1] ( [1,1])I Q E

  {Work on top row}

4. for j = 2 to M do

5. 1 *� �� � �[1, ] ( [1, ] [1, 1])I j Q E j I j  

6. endfor

  {Work on leftmost column}

7. for i = 2 to N do

8. 1 *� �� � �[ ,1] ( [ ,1] [ 1,1])I i Q E i I i  

9. endfor

10. for i = 2 to N do

11. for j = 2 to M do

12. 1 *� � � �� � � � � � � � � �[ , ] ( [ , ]) . [ , 1] . [ 1, 1] . [ 1, ]I i j Q E i j a I i j b I i j c I i j       

13.  endfor

14. endfor

15. end

IV. WPT-IWPT (WAVELET PACKET
TRANSFORM AND INTEGER WAVELET
PACKET TRANSFORM)

Wavelet packets represent a generalization of
multiresolution decomposition. The block scheme of the
single level wavelet transform is shown in Fig. 2.

 

Fig. 2. One level wavelet transforms.

The low-pass analysis filters and the high-pass ones
are followed by down sampling of a factor two. At the
reconstruction side, the low-pass and band-pass branches
are up sampled and filtered with the synthesis filters H(z)
and G(z) in order to obtain the original signal A wavelet
transform on J levels is obtained by iterating the filter bank
J � 1 times on the low-pass branch. The wavelet transform
coefficients consist of the J high-pass and the terminal
low-pass node sequences output by the filter bank tree.
Given a perfect reconstruction filter bank, the iterated
scheme represents an either orthonormal or biorthogonal
(non redundant) representation of the original signal.
Differently from the wavelet transform, the J-level WPT are
achieved by iterating the one level filter bank on both the
low-pass and the high-pass branch, and then applying a
pruning algorithm to select a suitable representation. An
algorithm has been proposed in [12], which selects the best
representation of a sequence across the entire tree based
on some proper cost function, which must measure the
compactness of the representation

The Lifting Scheme

In this section we give a brief description of the LS,
which serves to introduce the LS-based IWPT. The
mathematical formulation follows closely the one in [11].
Within the LS framework it is useful to represent digital
filters by means of their polyphase representation, and the
polyphase representation of a filter H(z) is described as
following :

2 1 2
0( ) ( ) ( )H z H z z H z

                          ... (1)

where H(z) and H0(z) are respectively obtained from
the even and odd coefficients of h(n) = Z � 1[H(z)], where
Z denotes the zeta transform. The wavelet filter bank can
be expressed in polyphase formulation defining a polyphase
matrix as

0 0

( ) ( )
( )

( ) ( )

H z G z
P z

H z G z
  

  
 

                            ... (2)

For the synthesis filters, and analogously P(z) for the
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analysis ones. Two filters [H(z),G(z)] are said to be
complementary. Primal Lifting in [11] states that, if H(z) and
G(z) are complementary, then any finite filter of the form
Gnew (z) = G(z) + H(z)s(z2 ) , with s(z) a Laurent polynomial
(i.e. the z-transform of a FIR filter), is complementary to
H(z). Moreover, Dual Lifting states that any finite filter of
the form Hnew (z) = H(z) + G(z)t(z2), with t(z) a Laurent
polynomial, is complementary to G(z) . Therefore, if the
primal and dual lifting steps are applied to an initial analysis
filter bank, new orthonormal or biorthogonal representations
can be derived. It can be shown that any known wavelet
trans-form can be obtained by means of the LS, starting
from a separation of the even and odd coefficients (the
lazy wavelet), and ending with a normalization. The two
lifting steps are depicted in Fig. 3 and Fig. 4 respectively.

Fig. 3. Primal lifting.

Fig. 4. Dual lifting.

A technique for the factorization of the polyphase matrix
using the Euclidean algorithm for the greatest common
divider between two Laurent polynomials is described in
[11]. From this factorization a scheme follows, which
achieves a wavelet transform as sequence of alternated
primal and dual lifting steps. The inverse wavelet transform
is achieved with the proper sequence of inverse steps. The
complexity can be halved with respect to that of the filter
bank scheme. Omitting details, it has been proven that
rounding off the output of each filter right before adding
or subtracting yields a couple of perfect reconstruction
forward and inverse IWT. It is straightforward to understand
that the same procedure which leads to IWT from wavelet
transform can be applied to the wavelet packets transform,
yielding the IWPT. The implementation follows the same
scheme used for the IWT. The IWPT tree can be built
iterating the single wavelet decomposition step on both

the low-pass and high-pass branches, with rounding off in
order to achieve the integer transforms. IWPT yields a
representation which can be lossless, as it maps an integer
valued sequence onto integer valued coefficients in the
Transformed domain; moreover, it allows for the selection
of an adaptive representation, which can match the variable
characteristics of image better than the IWT.

V. CONCLUSION AND FUTURE WORK

Image compression a challenging filed of image
processing. In this paper we discuss various transform
method for lossless image compression such as DCT, DPCM,
WPT-IWT. These entire method compression ratios are very
high. In this paper we discuss a decomposition process of
wavelet packet transform and also discuss a linear discreet
cosine transform function for simple image compression. In
future we combined a two different transform function and
perform another method for an image compression.
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